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LETI'ER TO THE EDITOR 

Scattering by a corrugated random surface with fractal 
slope 

E Jakeman 
Royal Signals and Radar Establishment, Malvern, Worcestershire, UK 

Received 14 October 1981 

Abtrad. The single-fold statistics of rays emanating from an infinite, corrugated, gaussian 
surface with fractal slope are investigated. Low moments of the ray-density fluctuation 
distribution are evaluated as a function of fractal dimension, D. It is shown that in the 
Brownian case, D = 1.5, the distribution is exactly negative exponential, corresponding to 
K-distributed intensity fluctuations in a coherent scattering configuration. 

Over the last three decades a great deal of effort has been devoted to understanding 
scintillation or amplitude fluctuations in waves scattered by random media such as 
rough surfaces, thin diffusing layers or extended regions of turbulence. There are many 
familar phenomena of this kind, for example the twinkling of starlight and the fading of 
radio waves, and their practical importance both as a source of information and in a 
noise context has long been recognised. 

The simplest mathematical model known to generate scintillation effects is the 
phase-changing screen, which introduces spatially random distortions into an incident 
planar wavefront. Amplitude fluctuations then develop during the course of free 
propagation beyond the scattering plane (see, for example, Zardecki (1978) and 
references therein). This model, which may be used to represent scattering by an ideal 
rough surface, has been extensively investigated for the case when the surface height 
fluctuations (wavefront distortions) constitute a joint-gaussian process and is then 
completed by specification of the height fluctuation spectrum. Two extreme surface 
types have been recognised. Mathematically, these can be identified as (1) fractal 
surfaces which are continuous but not differentiable, with power law spectra (Berry 
1979), and (2) smoothly varying surfaces which are differentiable to all orders and have 
gaussian-like spectral properties (Berry 1978). Type (1) surfaces generate only 
diffraction and interference effects, whilst type (2) surfaces also generate geometrical 
optics effects associated with rays or normals to the initial scattered wavefront. In the 
short-wavelength limit the latter dominate the statistical properties of the scattered 
intensity through the presence of singularities or catastrophes in the wave field. Indeed, 
the ray-density fluctuations diverge and the smoothing effects of diffraction have to be 
included in order to calculate the asymptotic behaviour of the intensity statistics in this 
limit (Berry 1976, 1978). 

In this Letter the scattering properties of an intermediate surface, type (3), are 
investigated. It will be assumed that the surface height is continuous and differentiable 
but its slope is a fractal. The concept of rays is valid for this model, but in the absence of 
higher surface derivatives no geometrical catastrophes occur in the propagating wave 
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field. This means that the short-wavelength limit can be examined without recourse to 
diffraction smoothing, i.e. by consideration of fluctuations in the density of rays only, 
and results in significantly simpler calculations than the type (2) surface discussed 
above. Type (3) scatterers, which may be thought of as having a facet-like structure, 
have been investigated recently in connection with the propagation of radio waves 
through the ionosphere (Rumsey 1975, Rino 1979), and a thorough discussion of the 
subject is given by Uscinski et a1 (1981). The object of the present work, however, is to 
draw attention to the close similarity between statistical predictions obtained by 
analytical solution of the scattering problem for model type (3) in the geometrical optics 
limit and the basic assumptions of a more empirical approach which has successfully 
explained certain experimental results (Jakeman and Pusey 1978, Jakeman 1980a, b). 

For simplicity, calculations in this Letter will be confined to a one-dimensional 
(corrugated) model of infinite lateral extent, i.e. in a Fresnel region configuration. A 
starting point for the calculations is the functional 

1 "  
R =-I S(m(x)-x/zo)dx. 

20 -m 

This defines the ray density at a distant point zo beyond a wavefront in the z = 0 plane 
which is corrugated in the x direction and has local random slope m(x). Evidently 

(R) = 1. (2) 

Using the results of gaussian noise theory, the Nth normalised moment of R may be 
written in the form 

The multi-dimensional integral over {xi} can be expressed as the sum of N! contribu- 
tions in which these variables are differently ordered. For example, when N = 3 the 
six regions x1 <xZ<x3; x1 <x3 <XZ; xzCx3 < X I ;  xz<x1 <x3; x3 < X I  < X Z ;  x3 < X Z  < X I  

span the entire three-dimensional space of integration. Each contribution is invariant 
under interchange of indices, so that 

Assuming that m (x) is a stationary random function of x, the transformation xi -* xj + X I  

for j 2 2 allows the x1 and A integrals to be performed exactly, to give 
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is the slope structure function. It is not difficult to check that the integrals (5)  diverge if 
S ( x )  is an even integral-powered function of x corresponding to smoothly varying type 
(2) surfaces. However, finite results are obtained for the fractal model 

l < D < 2 ,  (7) 

The second moment can be evaluated for arbitrary D in the allowed range, leading 

(8) 

s ( x )  = p D - l ) l X 1 2 ( 2 - m ,  

where D is the fractal dimension and L the topothesy of m ( x )  (Berry 1979). 

to 
(R2)  = (D - l ) - l ,  

whilst the third moment can be expressed in the reduced form 

For the Brownian fractal, D = 1.5, the integral in equation (9) can be evaluated to give 

(R3)  = 3! (D = 1.5). (10) 
In this latter case the right-hand side of equation ( 5 )  can be further reduced by 
successive transformations of the type 

xi + xi + X k  ( j a k + l )  1 
A k + A k -  9 Ai 

j - k + l  

leading finally to the result 

fork = 2 , 3 , 4 . .  . N - 1 ,  I 
N-1 

( R N ) = N ! [ _ L l m  2 ~ 2 0  --CO dAjmdxexp(* o 20 -$LA2x)] = N ! .  (12) 

Thus the density of rays from a corrugated gaussian surface with Brownian fractal slope 
has a negative exponential distribution: 

P ( R )  = exp( - R) (for D = 1.5). (13) 
The distribution (13) is the most familiar member of the class of gamma variates 

(with unit mean): 

P(X) =xu-' exp(-X)/r(a) (14) 
where 

(X2)= 1+a-' 

and it is interesting to compare the third moment (9) with the third moment of (14) when 
the second moments (8) and (15) coincide, i.e. when cy =(D-1)/(2-D).  Figure 1 
shows computed results for various values of D in the allowed range. It is clear that the 
ray density is close to being gamma distributed for a wide range of second-moment 
values, but particularly when 1.5 < D < 2. This allows the presence of an outer scale or 
low-frequency cut-off not incorporated into (7) (Uscinski er a1 1981) to be taken into 
account in a simple way. The effect of a finite correlation length within the scatterer is 
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1 
< R ’ )  

Figure 1. Comparison of the third moment of the distribution of ray-density fluctuations 
generated by a corrugated surface with fractal slope (-) and the third moment of a 
gamma distribution with the same variance (- - -). ( R )  = 1. 

that R will comprise a number of independent contributions, each of which will be 
approximately (or exactly if D = 1.5) gamma distributed with parameter a, say. By 
virtue of the infinitely divisible nature of the class (14), the sum of M such contributions 
will also be gamma distributed but with increased index M a  corresponding to a reduced 
degree of fluctuation. Thus the presence of a finite outer scale will not affect the general 
character of the ray-density fluctuations, but only their magnitude (variance). 

The results of the above calculation of ray-density statistics are directly applicable 
only to incoherent scattering configurations where broadband (e.g. white light) illu- 
mination or spatially extended sources are used, or where spatial or temporal averaging 
of interference effects occurs in the detection system. In coherent scattering configura- 
tions, when the complex wave amplitude can be represented by a two-dimensional 
random walk, the ray-density fluctuations are analogous to variations in the step 
number, which modulate the local mean intensity of the resultant interference pattern. 
It is well known that in the large-step-number limit the latter is characterised by a 
negative exponential distribution of intensity fluctuations (gaussian speckle: see for 
example Dainty (1975)). Random modulation of the mean of such a distribution 
according to the class (14) generates K -distributed fluctuations (Jakeman 1980a, b). In 
particular, for the Brownian case, D = 1.5, the following exact result is obtained, 
assuming unit mean for simplicity: 

(16) (IN) = N !  (RN) = (N!)’ ,  

corresponding to the K distribution 

P ( I )  = 2Ko(2J%. (17) 
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Although the above method of incorporating interference effects is somewhat empiri- 
cal, the results are in agreement with those obtained by a more rigorous treatment of the 
coherent scattering problem, to be presented elsewhere. 

The noteworthy feature of the results derived in this Letter is that whereas number 
density fluctuations of the type (14) have to date been invoked ad hoc to explain the 
observation of K-distributed scintillation, it appears that certain multi-scale scattering 
models uniquely predict distributions of this kind. 

The author is indebted to Dr J H Hannay of Bristol University for several valuable 
discussions of this problem. 
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